
13 Orthogonal Decomposition

Orthogonal Complement For a subsetM of an
inner-product space V, the orthogonal comple-
ment M⊥ (pronounced “M perp”) ofM is defined
to be the set of all vectors in V that are orthogonal
to every vector in M. That is,

M⊥ = {x ∈ V | 〈m,x〉 = 0 for all m ∈M}.

1. For an inner-product space V, what is V⊥?
What is 0⊥?

2. For every inner-product space V, prove that if
M ⊆ V , then M⊥ is a subspace of V.

3. If M is a subspace of a finite-dimensional
inner-product space V, show that then
V =M⊕M⊥.

4. If N is a subspace such that V =M⊕N and
N⊥M (every vector in N is orthogonal to every
vector in M), show that then N =M⊥.

Orthogonal Complementary Subspaces
If M is a subspace of a finite-dimensional inner-
product space V, then

V =M⊕M⊥. (2)

Furthermore, if N is a subspace such that V =
M⊕N and N⊥M (every vector in N is orthogo-
nal to every vector in M), then

N =M⊥.

5. Let U ∈ Matm×m(R), U = (U1|U2) be a
partitioned orthogonal matrix. Explain why im(U1)
and im(U2) must be orthogonal complements of
each other.

6. If M is a subspace of an n-dimensional
inner-product space, show that then

dim(M⊥) = n− dim(M) and M⊥⊥ =M.

Perp Operation If M is a subspace of an n-
dimensional inner-product space, then the follow-
ing statements are true.

• dim(M⊥) = n− dim(M).

• M⊥⊥ =M.

7. If M and N are subspaces of an n-dimensional
inner-product space, prove that the following
statements are true.

(a) M⊆ N =⇒ N⊥ ⊆M⊥.

(b) (M+N )⊥ =M⊥ ∩N⊥.

(c) (M∩N )⊥ =M⊥ +N⊥.

8. For every A ∈ Matm×n(R) show that
im(A)⊥ = ker(A>) and ker(A)⊥ = im(A>).

Orthogonal Decomposition Theorem
mmFor every A ∈ Matm×n(R)

im(A)⊥ = ker(A>) and ker(A)⊥ = im(A>).

In light of (2), this means that every matrix A ∈
Matm×n(R) produces an orthogonal decomposition
of Rm and Rn in the sense that

Rm = im(A)⊕ im(A)⊥ = im(A)⊕ ker(A>),

and

Rn = ker(A)⊕ ker(A)⊥ = ker(A)⊕ im(A>),

URV Factorization For each A ∈ Matn×n(R)
of rank r, there are orthogonal matrices U ∈
Matm×m(R) and V ∈ Matn×n(R) and a nonsin-
gular matrix C ∈ Matr×r(R) such that

• The first r columns in U are an orthonormal
basis for im(A).

• The last m−r columns of U are an orthonor-
mal basis for ker(A>).

• The first r columns in V are an orthonormal
basis for im(A>).

• The last n− r columns of V are an orthonor-
mal basis for ker(A).

Each different collection of orthonormal bases for
the four fundamental subspaces of A produces a
different URV factorization of A. In the complex
case, replace replace (?)> by (?)∗ and “orthogonal”
by “unitary”.

9. Verify the orthogonal decomposition theorem

for A =

 2 1 1
−1 −1 0
−2 −1 −1

.

10. Find a basis for the orthogonal complement of

M = span




1
2
0
3

 ,


2
4
1
6


.

11. Explain why the rank plus nullity theorem

dim im(A) + dim ker(A) = n ∀A ∈ Matm×n(R)
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is a corollary of the orthogonal decomposition
theorem.

12. Compute a URV factorization for the matrix

A =

−4 −2 −4 −2
2 −2 2 1
−4 1 −4 −2

 by using elementary row

operations together with Gram-Schmidt
orthogonalization.

Range Perpendicular to Nullspace For
rank(A) = r (A ∈ Matn×n(R)), the following
statements are equivalent:

• im(A)⊥ker(A),

• im(A) = im(A>),

• ker(A) = ker(A>),

• A = U

(
Cr×r 0

0 0

)
U>

in which U is orthogonal and C is nonsingular.
Such matrices will be called RPN matrices, short
for “range perpendicular to nullspace”. Some au-
thors call them range-symmetric or EP matrices.
Nonsingular matrices are trivially RPN because
they have a zero nullspace. For complex matrices,
replace (?)> by (?)∗ and “orthogonal” by “unitary”.

13. Compute a URV factorization for the matrix

A =

 1 2 3
−1 −2 −3
2 4 5

.

14. Basis for a vector space L ={
(x1, x2, x3)

> ∈ R3 |x1 + x2 = 0,−x1 + 2x2 + x3 = 0
}

is B =


 1
−1
3

. Find orthogonal complement of

L (with respect to standard inner product
〈x, y〉 = x>y).

15. In inner product space
P2 = {p(x) = ax2 + bx+ c : a, b, c ∈ R} of all

polynomials of degree less or equal 2 with inner
product 〈p, q〉 =

´ 1
−1 p(x)q(x) dx let M be a given

subspace defined with

M = span{x2 − 1, x+ 1}.

Find a basis for M⊥, and write a polynomial
p(x) = 2x2 + x+ 5 in form p = p1 + p2, where
p1 ∈M, p2 ∈M⊥.

16. In inner product space R4, with inner product
defined with

〈x, y〉 = x1y1 + 2x2y2 + x3y3 + 2x4y4

let V be a given subspace spanned with vectors
v1 = (1, 0, 1, 0)> and v2 = (1, 0, 1, 1)>. Write vector
x = (4, 2, 2, 4)> in form x = v + w, where v ∈ V,
w ∈ V⊥.

17. Let M denote subspace of inner product

space Mat2×2(R) spanned with matrices

[
1 0
0 1

]
and[

2 1
0 0

]
. Find a basis for orthogonal complement of

M, and write the matrix X =

[
1 0
0 0

]
in the form

X = Y1 + Y2, where Y1 ∈M, and Y2 ∈M⊥.
(Standard inner product in Mat2×2(R) is defined
with 〈A,B〉 = trag(AB>)).

18. In inner product space
P3 = {at3 + bt2 + ct+ d | a, b, c, d ∈ R} of all
polynomials of degree ≤ 3 with inner product
defined with

〈p, q〉 =

1ˆ

−1

p(t)q(t) dt

Let M = span{1 + t, 1} be a given subspace. Find a
basis for M⊥.

Alston Scott Householder11

11Alston Scott Householder (1904 – 1993) was one of the first people to appreciate and promote the use of elementary reflectors
for numerical applications. For u 6= 0 (u ∈ Cn), the elementary reflector about u⊥ is defined to be

R = I − 2
uu∗

u∗u

or, equivalently,
R = I − 2uu∗ when ‖u‖ = 1.

Elementary reflectors are also called Householder transformations. Although his 1937 Ph.D. dissertation at University of Chicago
concerned the calculus of variations, Householder’s passion was mathematical biology, and this was the thrust of his career until
it was derailed by the war effort in 1944. Householder joined the Mathematics Division of Oak Ridge National Laboratory in
1946 and became its director in 1948. He stayed at Oak Ridge for the remainder of his career, and he became a leading figure
in numerical analysis and matrix computations. Like his counterpart J. Wallace Givens at the Argonne National Laboratory,
Householder was one of the early presidents of SIAM.
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